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We have analyzed by stepwise heating a bulk
sample of the Martian orthopyroxenite
ALH84001 with documented carbonates in or-
der to investigate trapped N and noble gas iso-
topic systematics in the carbonates relative to
other phases. Earlier work on N in bulk
ALH84001 and in density separates from
ALH84001 [1, 2] revealed a light N component
(δ15N ≤ -21l). Light N has also been observed in
other meteorites of the SNC group (Chassigny,
Lafayette, and Nakhla) [3].
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Fig. 1. Release systematics of δ15N (l) in bulk
ALH84001 with carbonates. All temperature
steps ≤400oC show consistent nitrogen signature
of δ15N =-30 l.The high temperature data are
affected by spallation nitrogen.

The relationship between trapped N and noble
gases in the carbonates to those in other mineral
phases of the meteorite may provide clues to
their history and provide constraints on the evo-
lution of planet Mars. Xe in the bulk sample re-
vealed the presence of two and possibly three
distinct components. Such information would
complement the chemical composition study of
this meteorite [4, 5]. No physical separation of
the carbonates was attempted to avoid contami-
nation and since we planned to do a step-wise

heating experiment on the sample to differentiate
between the individual phases by their thermal
decomposition. The samples were analyzed fol-
lowing standard procedures using a mass spec-
trometer operated in the static mode [2].

Fig. 1 shows the release systematics and the
δ15N signatures. The first four temperature ex-
tractions (≤ 400oC) gave consistent N signature
of δ15N = -30 l. This is the lightest N observed in
a bulk sample of the SNC meteorites. The
measured light N signature is in agreement with
what is predicted for the Martian trapped N,
based on a correlation of the δ15N vs. atomic
ratios of 40Ar/14N in the SNC meteorites [6], and
with the inferred light end member composition
based on an earlier analysis of two other
ALH84001 bulk samples [1, 2]. It is interesting
to note that the light nitrogen signature is compa-
rable to nitrogen observed in E-chondrites and in
aubrites [8]. Most of the N (> 99 %) is released
at low temperatures (<1050oC) and the CO2 re-
lease in these steps can be used as a monitor for
carbonate decomposition. The N components
released in the temperature range of 450oC to
1050oC show heavier isotopic signatures in the
range δ15N = +7 l to -15 l. Since the release of
CO2 indicates the progress of carbonate decom-
position, the release of carbonate nitrogen is
constrained to the range of 300oC to 900oC.
However, the measured signatures in the 300oC
to 900oC extractions result from super-position
of the light low-temperature N with N in the car-
bonates. This allows us to derive a lower limit for
the N signature in the carbonate: δ15N = +7 l, the
maximum measured δ15N at 750oC. This result
shows that the carbonate has not exchanged
isotopically with (heavy) N in the Martian atmos-
phere (δ15N signature of 620 l [7]).
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Fig. 2. Release systematics of CO2 and of spalla-
tion 38Ar from an ALH84001 bulk sample.

We also use a built-in monitor to assess the ter-
restrial contamination of the carbonates: spalla-
tion 38Ar. The release of significant cosmogenic
components of 38Ar and 126Xe in the low tem-
perature steps is shown in Fig. 2. The CO2 re-
lease tracks the release of 38Arc due to the de-
composition of CaCO3 and FeCO3. The simulta-
neous release of cosmogenic 38Ar and 126Xe in
the low temperature steps suggest decomposition
of Ca- and Ba- rich phases. Whether or not the
observed cosmogenic effects are result of recent
cosmic-ray exposure or of pre-irradiation on the
Martian subsurface needs further consideration.
Although several investigators have reported ex-
posure ages of ~16Ma it has also been sug-
gested, based on the nuclear track and cosmic-
ray exposure age studies, that ALH84001 has a
complex exposure history [9]. In the present
study the total cosmogenic 38Ar released in tem-
perature steps up to 800oC is ~11%, compara-
ble to 6% observed in another bulk ALH84001
sample by [10] and the spallation 126Xe in the
same range yielded ~20%. The release of spalla-
tion components at very low temperatures (Fig.
2) is somewhat surprising, but indicates the pres-
ence of interstitial phases or inclusions which re-
act or decompose at temperatures below car-
bonate decomposition. These components also

introduce a complication in the identification of
the isotopic signatures of trapped Ar and Xe at
the corresponding temperature steps.

The Xe and N components released at higher
temperatures confirm the signatures reported in
an earlier study [2]. Measured Xe components
represent varying mixtures of a mass-fractionated
atmospheric component and an indigenous solar-
type component, as can be monitored by the
129Xe/130Xe ratios. Fission and spallation compo-
nents are released at >1200oC and the latter
component strongly affect the N isotopic signa-
ture.
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